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1. Introduction

Following the breakthrough analytic solution of Schnabl [1], our analytic understanding of

open string field theory (OSFT) has seen remarkable progress [2 – 9]. So far most work

has focused on the open bosonic string, but clearly it is also important to consider the

superstring. This is not just because superstrings are ultimately the theory of interest, but

because there are important physical questions, especially the holographic encryption of

closed string physics in OSFT, which may be difficult to decipher in the bosonic case [10].

Ideally, the first goal should be to find an analytic solution of superstring field theory1

on a non-BPS brane describing the endpoint of tachyon condensation, i.e. the closed string

vacuum. However, the construction of this solution will likely be subtle — indeed, Schn-

abl’s solution for the bosonic vacuum is very close to being pure gauge [1, 2]. Thus, it may

be useful to consider a simpler problem first: constructing solutions describing marginal de-

formations of a (non)BPS D-brane. Marginal deformations correspond to a one-parameter

family of open string backgrounds obtained by adding a conformal boundary interaction

to the worldsheet action — for example, turning on a Wilson line on a brane by adding the

boundary term Aµ

∫

∂Σ
dt∂Xµ(t) to the worldsheet action. Such backgrounds were studied

numerically for the bosonic string in ref. [12] and for the superstring in ref. [13]. Recently,

Schnabl [14] and Kiermaier et al [15] found analytic solutions for marginal deformations

in bosonic OSFT.2 The solutions bear striking resemblance to Schnabl’s vacuum solution,

but are simpler in the sense that they are manifestly nontrivial and can be constructed

systematically with a judicious choice of gauge.

1In this paper we will work with the Berkovits WZW-type superstring field theory [11].
2For previous analytic studies of marginal solutions in bosonic and super OSFT, see refs. [16, 17].
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In this note, we construct solutions of super OSFT describing marginal deformations

generated by on-shell vertex operators with vanishing operator products (in either the 0

or −1 picture). As was found in ref. [14, 15] such deformations are technically simpler

since they allow for solutions in Schnabl’s gauge, B0Φ = 0 — though probably more

general marginal solutions can be obtained once the analogous problem is understood for

the bosonic string, either by adding counterterms as described in ref. [15] or by employing

a “pseudo-Schnabl gauge” as suggested in ref. [14]. The superstring solution exhibits a

remarkable duality with its bosonic counterpart: it formally represents a re-expression

of the bosonic solution in pure gauge form. It would be very interesting if this duality

generalized to other solutions.3

This paper is organized as follows. In section 2 we briefly review the bosonic marginal

solution in the split string formalism [2, 8, 20], which we will prove convenient for many

computations. In section 3 we consider the superstring, motivating the solution as analo-

gous to constructing an explicit pure gauge form for the bosonic marginal solution. This

strategy quickly gives a very simple expression for the complete analytic solution of super

OSFT. In section 4 we consider the dual problem: finding a pure gauge expression for the

bosonic marginal deformation describing a constant, light-like gauge field on a non-compact

brane. Though quite analogous to the superstring, this problem is slightly more complex.

Nevertheless we are able to find an analytic solution. We end with some conclusions.

While this note was in preparation, we learned of the independent solution by Yuji

Okawa [21]. His paper should appear concurrently.

2. Bosonic solution

Let us begin by reviewing the bosonic marginal solution [14, 15] in the language of the split

string formalism [2, 8, 20], which is a useful shorthand for many calculations. The first

step in this approach is to find a subalgebra of the open string star algebra, closed under

the action of the BRST operator, in which we hope to find an analytic solution. For the

bosonic marginal solution the subalgebra is generated by three string fields K,B and J :

K = Grassmann even, gh# = 0

B = Grassmann odd, gh# = −1

J = Grassmann odd, gh# = 1 (2.1)

satisfying the identities,

[K,B] = 0 B2 = J2 = 0 (2.2)

and

dK = 0 dJ = 0 dB = K (2.3)

3A related observation was made by Ohmori in the context of vacuum superstring field theory [18], and

also plays an important role in the construction of heterotic string field theory [19].
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where d = QB is the BRST operator and the products above are open string star products

(we will mostly omit the ∗ in this paper). The relevant explicit definitions of K,B, J are,4

K = −π

2
(K1)L|I〉 K1 = L1 + L−1

B = −π

2
(B1)L|I〉 B1 = b1 + b−1

J = J(1)|I〉 (2.4)

where |I〉 is the identity string field and the subscript L denotes taking the left half of

the corresponding charge.5 The operator J(z) is a dimension zero primary generating the

marginal trajectory. It takes the form,

J(z) = cO(z) (2.5)

where O is a dimension one matter primary with nonsingular OPE with itself. This is

crucial for guaranteeing that the square of the field J vanishes, as in eq. (2.2). With these

preliminaries, the marginal solution for the bosonic string is:

Ψ = λFJ
1

1 − λB F 2−1
K J

F (2.6)

where λ parameterizes the marginal trajectory and F = eK/2 = Ω1/2 is the square root of

the SL(2, R) vacuum (a wedge state). To linear order in λ the solution is,

Ψ = λFJF + · · · = λJ(0)|Ω〉 + · · · (2.7)

which is the nontrivial element of the BRST cohomology generating the marginal trajectory.

Let us prove that eq. 2.6 satisfies the equations of motion. Using the identities

eqs. (2.2), (2.3),

dΨ = −λFJd

(

1

1 − λB F 2−1
K J

)

F

= −λFJ
1

1 − λB F 2−1
K J

d

(

λB
F 2 − 1

K
J

)

1

1 − λB F 2−1
K J

F

= −λ2FJ
1

1 − λB F 2−1
K J

(F 2 − 1)J
1

1 − λB F 2−1
K J

F (2.8)

Notice the (F 2 − 1)J factor in the middle. Since J2 = 0, the . . . − 1)J term vanishes

when multiplied with the Js to the left — thus the necessity of marginal operators with

nonsingular OPE. This leaves,

dΨ = −λ2FJ
1

1 − λB F 2−1
K J

F 2J
1

1 − λB F 2−1
K J

F = −Ψ2 (2.9)

4We may generalize the construction by considering other projector frames [4, 7, 8] or by allowing the

field F in eq. (2.6) to be an arbitrary function of K [2, 9]. Such generalizations do not add much to the

current discussion so we will stick with the definitions presented here.
5“Left” means integrating the current counter-clockwise on the positive half of the unit circle. This

convention differs by a sign from ref. [8] but agrees with ref. [4].
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i.e. the bosonic equations of motion are satisfied.

The solution has a power series expansion in λ:

Ψ =

∞
∑

n=1

λnΨn (2.10)

where,

Ψn = FJ

(

B
F 2 − 1

K
J

)n−1

F (2.11)

To make contact with the expressions of refs. [14, 15], note the relation,

F 2 − 1

K
=

∫ 1

0

dtΩt (2.12)

To prove this, recall Ωt = etK and calculate,6

K

∫ 1

0

dtΩt =

∫ 1

0

dt
d

dt
etK = eK − 1 = F 2 − 1 (2.13)

Using this and the mapping between the split string notation and conformal field theory

described in ref. [8], the Ψns can be written as CFT correlators on the cylinder:

〈Ψn, χ〉 =

∫ 1

0

dt1 . . .

∫ 1

0

dtn−1〈J(tn−1 + · · · + t1 + 1)B . . . J(t1 + 1) × (2.14)

×BJ(1)fS ◦ χ(0)〉Ctn−1+···+t1+2

where fS(z) = 2
π tan−1 z is the sliver conformal map, and in this context B is the insertion

∫ −i∞
i∞

dz
2πib(z) to be integrated parallel to the axis of the cylinder in between the J insertions

on either side. This matches the expressions found in refs. [14, 15].

In passing, we mention that this solution was originally constructed systematically

by using the equations of motion to recursively determine the Ψns in Schnabl gauge. If

desired, it is also possible to perform such calculations in split string language; we offer

some sample calculations in appendix A.

3. Superstring solution

Let us now consider the superstring. The marginal deformation is generated by a −1

picture vertex operator,

e−φcO(z) (3.1)

where O(z) is a dimension 1
2

superconformal matter primary. We will use Berkovits’s

WZW-type superstring field theory [11],7 in which case the string field is given by multi-

plying the −1 picture vertex operator by the ξ ghost:

X(z) = ξe−φcO(z) (3.2)

6Note that, in general, the inverse of K is not well defined. However, when operating on F 2 − 1 it

is. This is why we cannot simply use F 2/K in the solution in place of F
2−1
K

, which would naively give a

solution even for marginal operators with singular OPEs.
7See refs. [22 – 24] for nice reviews.
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This corresponds to a solution of the linearized Berkovits equations of motion,

η0QB (λX(0)|Ω〉) = 0 (3.3)

since η0 eats the ξ and the −1 picture vertex operator is in the BRST cohomology. We

will also find it useful to consider the 0 picture vertex operator,

J(z) = QB · X(z) = cG−1/2 · O(z) + ηeφO(z) (3.4)

A complimentary way of seeing the linearized equations of motion are satisfied is to note

that J(z) is in the small Hilbert space. As with the bosonic string, it is very helpful to

assume that X(z) and J(z) have vanishing OPEs:

lim
z→w

J(z)X(w) = lim
z→w

J(z)J(w) = lim
z→w

X(z)X(w) = 0 (3.5)

We mention two examples of such deformations. The simplest is the light-like Wilson line

O(z) = ψ+(z) (α′ = 1), where

X(z) = ξe−φcψ+(z)

J(z) = i
√

2c∂X+(z) + ηeφψ+(z) (3.6)

There is also a “rolling tachyon” marginal deformation [25] O(z) = σ1e
X0/

√
2(z) on a

non-BPS brane. The corresponding vertex operators are,

X(z) = σ1ξe
−φceX0/

√
2(z)

J(z) = iσ2(−icψ0 + ηeφ)eX0/
√

2(z) (3.7)

The Pauli matrices σ1, σ2, σ3 are “internal” Chan-Paton factors [26, 27], necessary to ac-

commodate non-BPS GSO(−) states into the Berkovits framework. Though we will not

write it explicitly, in this context it is important to remember that the BRST operator and

the eta zero mode are carrying a factor of σ3 (thus the presence iσ2 = σ3σ1 in the above

expression for J). We mention that both X(0)|Ω〉 and J(0)|Ω〉 are in Schnabl gauge and

annihilated by L0.

Let us describe the subalgebra relevant for finding the marginal solution. It consists

of the products of four string fields, K,B,X, J :

K = Grassmann even, gh# = 0

B = Grassmann odd, gh# = −1

X = Grassmann even, gh# = 0

J = Grassmann odd, gh# = 1 (3.8)

All four of these have vanishing picture number. K and B are the same fields encountered

earlier in eq. (2.4); X and J are defined,

X = X(1)|I〉 J = J(1)|I〉 (3.9)

– 5 –
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with X(z), J(z) as in eqs. (3.2), (3.4). We have the identities,

[K,B] = 0 B2 = 0 X2 = J2 = XJ = JX = 0 (3.10)

where the third set follows because the corresponding vertex operators have vanishing

OPEs. The algebra is closed under the action of the BRST operator:

dB = K dK = 0

dX = J dJ = 0 (3.11)

Note that the eta zero mode d̄ ≡ η0 annihilates K,B and J ,

d̄K = d̄B = d̄J = 0 (3.12)

since they live in the small Hilbert space. However, it does not annihilate X, and the

algebra is not closed under d̄. Though it is not a priori obvious that the K,B,X, J algebra

is rich enough to encapsulate the marginal solution, we will quickly see that it is.8

We seek a one parameter family of solutions of the super OSFT equations of motion,

d̄
(

e−ΦdeΦ
)

= 0 (3.13)

where Φ is a Grassmann even, ghost and picture number zero string field which to linear

order in the marginal parameter takes the form,

Φ = λFXF + · · · (3.14)

There are many strategies one could take to solve this equation, but before describing our

particular approach it is worth mentioning the “obvious” method: fixing Φ in Schnabl

gauge and attempting a perturbative solution, as in refs. [14, 15]:

Φ =

∞
∑

n=1

λnΦn Φ1 = FXF (3.15)

At second order,9 the Schnabl gauge solution is actually fairly simple:

Φ2 =
1

2!

[

FXB
F 2 − 1

K
JF + FJB

F 2 − 1

K
XF

]

(3.16)

8For GSO(−) deformations the above discussion is subtly modified. In particular, X must be Grassmann

odd while J is Grassmann even. Still, effectively the Grassmann assignments eq. (3.8) remain valid since

X, J carry internal Chan-Paton factors which anticommute with the σ3s carried by QB, η0. If we like, we

can take the effective Grassmann parity to be the “bare” Grassmann parity plus the number of σ1s. Also,

note that the field B should implicitly carry a factor of σ3 in order for dB = K. Since the solution has

ghost number zero, J and B always appear multiplied, so we could absorb B’s Chan-Paton factor into

J , which amounts to replacing the iσ2 in eq. (3.7) by σ1. Thus the field has the expected decomposition

Φ = ΦGSO(+) + σ1Φ
GSO(−).

9Explicitly, if we plug eq. (3.15) into the equations of motion, we find a recursive set of equations of the

form d̄dΦn = d̄Fn−1[Φ], where Fn−1[Φ] depends on Φ1, . . . , Φn−1. The Schnabl gauge solution is obtained

by writing Φn = B0

L0
Fn−1[Φ].

– 6 –
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and seems quite similar to the bosonic solution. At third order, however, we found an

extremely complicated expression (though still within the K,B,X, J subalgebra). It seems

doubtful that a closed form solution for Φ in Schnabl gauge can be obtained.

Since the Schnabl gauge construction appears complicated, we are lead to consider

another approach. To motivate our particular strategy, we make two observations: First,

the combination e−ΦdeΦ which enters the superstring equations of motion also happens

to be a pure gauge configuration from the perspective of bosonic OSFT. Second, there is

a basic similarity between the K,B, J algebra for the bosonic marginal solution and the

K,B, J,X algebra for the superstring. The main difference of course is the presence of

X for the superstring, whose BRST variation gives J . If such a field were present for

the bosonic string, the bosonic marginal solution would be pure gauge because J would

be trivial in the BRST cohomology. With this motivation, we are lead to consider the

equation

e−ΦdeΦ = λFJ
1

1 − λB F 2−1
K J

F (3.17)

From the bosonic string perspective, this equation represents an expression of the bosonic

marginal solution in a form which is pure gauge. From the superstring perspective, this is

a partially gauge fixed form of the equations of motion, since the expression on the right

hand side is in the small Hilbert space.

Let us now solve this equation. It will turn out to be simpler to solve for the group

element g = eΦ; we make a perturbative ansatz,

g = eΦ = 1 +
∞

∑

n=1

λngn g1 = Φ1 = FXF (3.18)

Expanding out eq. (3.17) to second order gives,

dg2 = FJB
F 2 − 1

K
JF + g1dg1

= FJB
F 2 − 1

K
JF + FXF 2JF (3.19)

As it turns out, this equation is solved by the second order Schnabl gauge solution eq. (3.16):

g2 = Φ2 +
1

2
Φ2

1 =
1

2!

[

FXB
F 2 − 1

K
JF + FJB

F 2 − 1

K
XF + FXF 2XF

]

(3.20)

but there is a simpler solution:

g2 = FXB
F 2 − 1

K
JF (3.21)

Using this form of g2 we can proceed to third order — remarkably, the solution is practically

just as simple:

g3 = FX

(

B
F 2 − 1

K
J

)2

F (3.22)

– 7 –
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This leads to an ansatz for the full solution:

eΦ = 1 + λFX
1

1 − λB F 2−1
K J

F (3.23)

To check this, calculate:

deΦ = λFJ
1

1 − λB F 2−1
K J

F + λFXd

(

1

1 − λB F 2−1
K J

)

F

= λFJ
1

1 − λB F 2−1
K J

F + λFX
1

1 − λB F 2−1
K J

d

(

λB
F 2 − 1

K
J

)

1

1 − λB F 2−1
K J

F

= λFJ
1

1 − λB F 2−1
K J

F + λ2FX
1

1 − λB F 2−1
K J

F 2J
1

1 − λB F 2−1
K J

F

=

(

1 + λFX
1

1 − λB F 2−1
K J

F

)

λFJ
1

1 − λB F 2−1
K J

F

= eΦλFJ
1

1 − λB F 2−1
K J

F (3.24)

Therefore, eq. (3.23) is indeed a complete solution to the super OSFT equations of motion!

Note, however, that it is not quite a solution to the pure gauge problem of the bosonic

string. In particular, in step three we needed to assume XJ = 0 — something we would

not expect to hold in the bosonic context. We will give the solution to the bosonic problem

in the next section.

Let us make a few comments about this solution. First, though the string field Φ itself

is not in Schnabl gauge, the nontrivial part of the group element eΦ is — this is not difficult

to see, but we offer one explanation in appendix A. The second comment is related to the

string field reality condition. In super OSFT, the natural reality condition is that Φ should

be “imaginary” in the following sense:

〈Φ, χ〉 = −〈Φ|χ〉 (3.25)

where 〈Φ| is the Hermitian dual of |Φ〉 and χ is any test state. Alternatively, we can write

this,

Φ† = −Φ (3.26)

where † is an anti-involution on the star algebra, formally completely analogous to Hermi-

tian conjugation of operators.10 With this reality condition, the group element should be

10Given a state Ψ, we define its conjugate Ψ†,

〈Ψ†, χ〉 = 〈Ψ|χ〉

If |Ψ〉 carries Chan-Paton indices, then to get the Hermitian dual 〈Ψ| we should also transpose the indices.

We have the notable properties,

(Ψ†)† = Ψ (ΨΦ)† = Φ†Ψ† (dΨ)† = (−1)Ψ+1d(Ψ†)

The third equation is true even when d carries an internal Chan-Paton factor σ3, provided that (−1)Ψ is

taken to be the “effective” Grassmann parity. We have to be a little careful with this conjugation for vertex

operators of non-integer conformal weight, though such subtleties play no role in this paper. For a more

detailed discussion of the reality condition in open superstring field theory, see ref. [28].
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unitary:

g† = g−1

Using,

K† = K B† = B J† = J X† = −X (3.27)

it is not difficult to see that the analytic solution eΦ is not unitary. By contrast, the Schnabl

gauge construction automatically gives an imaginary Φ and unitary eΦ. However, upon

further analysis we have found a way to construct a unitary eΦ by gauge transformation

of eq. (3.23). Details are explained in an added appendix B.

Let us take the opportunity to express the solution in a few other forms which may

be more convenient for explicit computations. Following the usual prescription we may

express the gns as correlation functions on the cylinder:

〈gn, χ〉 =

∫ 1

0

dt1 . . .

∫ 1

0

dtn−1〈X(tn−1 + · · · + t1 + 1) ×

×BJ(tn−2 + · · · + t1 + 1) . . . BJ(1) fS ◦ χ(0)〉CP

ti+2
(3.28)

= (−1)n
∫ 1

0

dt1 . . .

∫ 1

0

dtn−1〈X(L + 1)[O′(ℓn−2 + 1) . . .O′(ℓ1 + 1)] ×

×BJ(1) fS ◦ χ(0)〉CL+2
(3.29)

In the second line we manipulated the multiple B insertions, simplifying the vertex oper-

ators and obtaining a single B insertion to the right; we introduced the length parame-

ters [15]:

ℓi =

i
∑

k=1

tk L = ℓn−1 (3.30)

and defined O′(z) = G− 1
2
·O(z). We may also express the solution in the operator formalism

of Schnabl [1]:

|gn〉 =
(−1)nO+1

2

∫ 1

0

dt1 . . .

∫ 1

0

dtn−1ÛL+2 f−1
S ◦ (ξe−φO(L/2))Õ′(yn−2) . . . Õ′(y1)

×
(

Õ′
(

− L

2

)[

B+c̃

(

L

2

)

c̃

(

− L

2

)

− c̃

(

L

2

)

− c̃

(

− L

2

)]

+f−1
S ◦

(

ηeφO
(

− L

2

))[

B+c̃

(

L

2

)

+ 1

])

|Ω〉 (3.31)

where yi = ℓi − L/2 and [6] Ûr =
(

2
r

)L∗
0
(

2
r

)L0. Also we have used f−1
S to define the tilde

to hide some factors of π
2
. The expression is somewhat more complicated than the bosonic

solution since the vertex operator J(z) has a piece without a c ghost, so in the bc CFT the

solution has a component not proportional to Schnabl’s ψn [1].

4. Pure gauge for bosonic solution

In the last section, we found a solution for the superstring by analogy with the pure gauge

problem of the bosonic string; but we did not solve the latter. The scenario we have in

– 9 –
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mind is a constant, lightlike gauge field on a non-compact D-brane. Since there is no flux

and no way to wind a Wilson loop, such a field configuration should be pure gauge. From

the string field theory viewpoint, this is reflected by the fact that the marginal vertex

operator becomes BRST trivial in the noncompact limit,

ic∂X+(z) = QB · 2iX+(z) (4.1)

Of course, on a compact manifold the operator X+(z) is not globally defined so the marginal

deformation is nontrivial.

Translating to split string language, we consider an algebra generated by four fields

K,B,X, J , where K,B are defined as before and,

X = 2iX+(1)|I〉 J = ic∂X+(1)|I〉 (4.2)

These have the same Grassmann and ghost number assignments as eq. (3.8). We have the

algebraic relations,

[K,B] = 0 B2 = 0 J2 = 0 [X,J ] = 0 (4.3)

Note the difference from the superstring case: the products of X with itself and with J ,

though well defined (the OPEs are nonsingular), are nonvanishing. However, we still have

dB = K dK = 0

dX = J dJ = 0 (4.4)

with the second set implying that J is trivial in the BRST cohomology.

We now want to solve eq. (3.17) assuming this slightly more general set of algebraic

relations. Playing around a little bit, the solution we found is,

eΛ = 1 + λFuλ(X)
1

1 − λB F 2−1
K J

F (4.5)

where,

uλ(X) =
eλX − 1

λ
(4.6)

The relevant identity satisfied by this particular combination is,

duλ = J(λuλ + 1) (4.7)

Let us prove that this gives a pure gauge expression for the bosonic marginal solution:

deΛ = λFduλ
1

1 − λB F 2−1
K J

F + λFuλ
1

1 − λB F 2−1
K J

d

(

λB
F 2 − 1

K
J

)

1

1 − λB F 2−1
K J

F

= λFJ(λuλ + 1)
1

1 − λB F 2−1
K J

F + λ2Fuλ
1

1 − λB F 2−1
K J

(F 2 − 1)J
1

1 − λB F 2−1
K J

F

Now we come to the critical difference from the superstring. Note the . . .−1)J piece in the

middle of the second term. Before it vanished when multiplied by X,J to the left. This

– 10 –
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time it contributes because XJ 6= 0; still, the Js in the denominator of the factor to the

left get killed because J2 = 0. Thus we have,

deΛ = λFJ(λuλ + 1)
1

1 − λB F 2−1
K J

F + λ2Fuλ
1

1 − λB F 2−1
K J

F 2J
1

1 − λB F 2−1
K J

F

−λ2FuλJ
1

1 − λB F 2−1
K J

F (4.8)

where the third term comes from the . . . − 1)J piece. Note the cancellation. We get,

deΛ = λFJ
1

1 − λB F 2−1
K J

F + λ2Fuλ
1

1 − λB F 2−1
K J

F 2J
1

1 − λB F 2−1
K J

F

=

(

1 + λFuλ
1

1 − λB F 2−1
K J

F

)

λFJ
1

1 − λB F 2−1
K J

F

= eΛλFJ
1

1 − λB F 2−1
K J

F (4.9)

thus we have a pure gauge expression for the marginal solution.

To further emphasize the duality with the superstring, note that for the pure gauge

problem the role of the eta zero mode is played by the lightcone derivative:

d̄ ∼ d

dx+
(4.10)

In particular we have solved the equation,

d

dx+

(

e−ΛdeΛ
)

= 0 (4.11)

Though there are many pure gauge trajectories generated by FXF , only a trajectory which

in addition satisfies this equation will be a well-defined, nontrivial solution once spacetime

is compactified.

5. Conclusion

In this note, we have constructed analytic solutions of open superstring field theory describ-

ing marginal deformations generated by vertex operators with vanishing operator products.

We have not attempted to perform any detailed calculations with these solutions, though

such calculations are certainly possible. The really important questions about marginal

solutions — such as mapping out the relation between CFT and OSFT marginal parame-

ters, obtaining analytic solutions for vertex operators with singular OPEs, or proving Sen’s

rolling tachyon conjectures [25] — require more work even for the bosonic string. Hopefully

progress will translate directly to the superstring.

For us, the main motivation was the hope that marginal solutions could give us a hint

about how to construct the vacuum for the open superstring. Indeed, for the bosonic string

the marginal and vacuum solutions are closely related: To get the vacuum solution (up to

– 11 –
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the ψN piece), one simply replaces J with d(Bc) = cKBc and takes the limit λ → ∞.11

Perhaps a similar trick will work for the superstring.
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A. B0, L0 with split strings

In many analytic computations in OSFT it is useful to invoke the operators B0,L0 and their

cousins [1, 4]. To avoid unnecessary transcriptions of notation, it is nice to accommodate

these types of operations in the split string formalism.

We begin by defining the fields,

L = (L0)L|I〉 L∗ = (L∗
0)L|I〉 (A.1)

and their b-ghost counterparts B,B∗. We can split the operators L0,L∗
0 into left/right

halves non-anomalously because the corresponding vector fields vanish at the midpoint [4].

The fields L,L∗ satisfy the familiar special projector algebra,

[L,L∗] = L + L∗ (A.2)

Following ref. [4] we may define even/odd combinations,

L+ = L + L∗ = −K L− = L −L∗ (A.3)

where K is the field introduced before. Note that we have,

L0 · Ψ = LΨ + ΨL∗

B0 · Ψ = BΨ + (−1)ΨΨB∗ (A.4)

We can use similar formulas to describe the many related operators introduced in ref. [4]

Let us now describe a few convenient facts. Let J(z) be a vertex operator for a state

J(0)|Ω〉 in Schnabl gauge, and let J = J(1)|I〉 be its corresponding field. Then,

[B−, J ] = 0 (A.5)

where [, ] is the graded commutator. A similar result [L−, J ] = 0 holds if J(0)|Ω〉 is killed

by L0. We also have the useful formulas,

LF =
1

2
FL− FL∗ = −1

2
L−F [L−,Ωγ ] = 2γKΩγ (A.6)

11The λ used here and the λ parameterizing the pure gauge solutions of Schnabl [1] are related by

λ(Schnabl) = λ

λ+1
.
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The third equation is a special case of,

[L−, G(K)] = 2KG′(K) (A.7)

with similar formulas involving B,B∗. Of course, these equations are well-known conse-

quences of the Lie algebra eq. (A.2).

As an application, let us prove the identity,

B0

L0

J1(0)|Ω〉 ∗ J2(0)|Ω〉 = (−1)J1FJ1B
F 2 − 1

K
J2F (A.8)

where J1, J2(0)|Ω〉 are killed by B0,L0. This expression occurs when constructing the

marginal solution (bosonic or superstring) in Schnabl gauge. The direct approach is to

compute L−1
0 on the left hand side in split string notation; the resulting derivation is fairly

reminiscent of ref. [15]. Instead, we will multiply this equation by L0 and prove that both

sides are equal. The left hand side gives,

B0 · FJ1F
2J2F = BFJ1F

2J2F + (−1)J1+J2FJ1F
2J2FB∗

=
1

2
(−1)J1FJ1[B−, F 2]J2F

= (−1)J1FJ1BF 2J2F (A.9)

The right hand side gives,

L0 · FJ1B
F 2 − 1

K
J2F = LFJ1B

F 2 − 1

K
J2F + FJ1B

F 2 − 1

K
J2FL∗

=
1

2
FJ1

[

L−, B
F 2 − 1

K

]

J2F

= FJ1B
F 2 − 1

K
J2F +

1

2
FJ1B

[

L−,
F 2 − 1

K

]

J2F (A.10)

Focus on the commutator:
[

L−,
F 2 − 1

K

]

= [L−, F 2]
1

K
+ (F 2 − 1)

[

L−,
1

K

]

= 2F 2 − 2
F 2 − 1

K
(A.11)

where we used eq. (A.7). This computation is a somewhat formal because the inverse of

K is not generally well defined, but it can be checked using the integral representation

eq. (2.12). Plugging the commutator back in, the F 2−1
K terms cancel and we are left with,

L0 · FJ1B
F 2 − 1

K
J2F = FJ1BF 2J2F (A.12)

which after multiplying by (−1)J1 establishes the result.

Before concluding, we mention that any state of the form,

FJ1BG2(K)J2 . . . BGn(K)JnF (A.13)
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with [B−, Ji] = 0, is in Schnabl gauge. The proof follows at once upon noting,

[B−, BG(K)] = −2B2G′(K) = 0 (A.14)

so the entire expression between the F s commutes with B−. This is one way of seeing that

the nontrivial part of the group element eΦ − 1 for the superstring solution is in Schnabl

gauge.

B. Unitary e
Φ

The analytic solution eq. (3.23) is very simple, but it has the disadvantage of not satisfying

the standard reality condition, i.e. eΦ is not unitary and Φ is not imaginary. Presumably

there is an infinite dimensional array of marginal solutions which do satisfy the reality con-

dition, and some may have analytic descriptions. In this appendix we give one construction

which is particularly closely related to our solution eq. (3.23). For a very interesting and

completely different solution, we refer the reader to an upcoming paper by Okawa [29].

Our strategy will be to find a finite gauge transformation of g in eq. (3.23) yielding a

unitary solution. The transformation is,

U = V g (B.1)

where V is some string field of the form,

V = 1 + dv (B.2)

with v carrying ghost number −1. A little thought reveals a natural candidate for V :

V =
1

√

gg†
(B.3)

where g† is the conjugate of eq. (3.23):

g† = 1 − λF
1

1 − JλB F 2−1
K

XF (B.4)

and we use the Hermitian definition of the square root. Intuitively, this is just taking the

original solution and dividing by its “norm.” More explicitly, if we define,

gg† = 1 + T

T = λFX
1

1 − λB F 2−1
K J

F − λF
1

1 − JλB F 2−1
K

XF

−λ2FX
1

1 − λB F 2−1
K J

F 2 1

1 − JλB F 2−1
K

XF (B.5)

then the required gauge transformation is given by the formal sum,

V =
1

√

gg†
=

∞
∑

n=0

(

−1/2

n

)

T n (B.6)
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This proposal must be subject to two consistency checks. First, of course, is that the

field U is actually unitary. The proof is straightforward:

UU † =
1

√

gg†
gg†

1
√

gg†
= gg†

1
√

gg†
1

√

gg†
= 1

U †U = g†
1

√

gg†
1

√

gg†
g = g†(g†)−1g−1g = 1 (B.7)

The second check is that V is a gauge transformation of the form eq. (B.2). This follows

if the field T is BRST exact, T = du, since then we can write (for example),

V = 1 + d

( ∞
∑

n=1

(

−1/2

n

)

uT n−1

)

(B.8)

A little guesswork reveals the following BRST exact expression for T :

T = d

(

λ2FX
1

1 − λB F 2−1
K J

B
F 2 − 1

K
XF

)

(B.9)

This establishes not only that U is an analytic solution, but (perhaps more importantly)

that the simpler expression g is in the same gauge orbit with a solution satisfying the

physical reality condition. This leaves no question as to the physical viability of our original

analytic solution eq. (3.23).

As usual, the unitary solution U can be defined explicitly in terms of cylinder correla-

tors by expanding eq. (B.1) as a power series in λ. Unfortunately this is somewhat tedious

because the implicit dependence on λ in eq. (B.1) is complicated. As an expansion for

the imaginary field Φ, the first two orders agree with the Schnabl gauge solution (as they

must12), while at third order we find:

Φ3 =
1

2

(

FXB
F 2 − 1

K
JB

F 2 − 1

K
JF + FJB

F 2 − 1

K
JB

F 2 − 1

K
XF

)

+
1

4

(

FXF 2JB
F 2 − 1

K
+ FJB

F 2 − 1

K
XF 2

)

XF

−1

4
FX

(

B
F 2 − 1

K
JF 2XF + F 2XB

F 2 − 1

K
JF

)

+
1

3
(FXF )3 (B.10)

This expression is much simpler than the Schnabl gauge solution at third order, which in-

volves intricate constrained and entangled integrals over moduli separating vertex operator

insertions.
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